메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제49권 제2호
발행연도
2017.1
수록면
434 - 441 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Containment venting is one of several essential measures to protect the integrity of thefinal barrier of a nuclear reactor during severe accidents, by which the uncontrollablerelease of fission products can be avoided. The authors seek to develop an optimizationapproach to venting operations, from a simulation-based perspective, using an integratedsevere accident code, THALES2/KICHE. The effectiveness of the containment-ventingstrategies needs to be verified via numerical simulations based on various settings of theventing conditions. The number of iterations, however, needs to be controlled to avoidcumbersome computational burden of integrated codes. Bayesian optimization is an efficientglobal optimization approach. By using a Gaussian process regression, a surrogatemodel of the “black-box” code is constructed. It can be updated simultaneously whenevernew simulation results are acquired. With predictions via the surrogate model, upcominglocations of the most probable optimum can be revealed. The sampling procedure isadaptive. Compared with the case of pure random searches, the number of code queries islargely reduced for the optimum finding. One typical severe accident scenario of a boilingwater reactor is chosen as an example. The research demonstrates the applicability of theBayesian optimization approach to the design and establishment of containment-ventingstrategies during severe accidents.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0