메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제42권 제6호
발행연도
2010.1
수록면
656 - 661 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Lead-alloys are very attractive nuclear coolants due to their thermo-hydraulic, chemical, and neutronic properties. Byutilizing the HELIOS (Heavy Eutectic liquid metal Loop for Integral test of Operability and Safety of PEACER2) facility, athermal hydraulic benchmarking study has been conducted for the prediction of pressure loss in lead-alloy cooled advancednuclear energy systems (LACANES). The loop has several complex components that cannot be readily characterized withavailable pressure loss correlations. Among these components is the core, composed of a vessel, a barrel, heaters separatedby complex spacers, and the plenum. Due to the complex shape of the core, its pressure loss is comparable to that of the restof the loop. Detailed CFD simulations employing different CFD codes are used to determine the pressure loss, and it is foundthat the spacers contribute to nearly 90 percent of the total pressure loss. In the system codes, spacers are usually accountedfor; however, due to the lack of correlations for the exact spacer geometry, the accuracy of models relies strongly on assumptionsused for modeling spacers. CFD can be used to determine an appropriate correlation. However, application of CFD alsorequires careful choice of turbulence models and numerical meshes, which are selected based on extensive experience withliquid metal flow simulations for the KALLA lab. In this paper consistent results of CFX and Star-CD are obtained andcompared to measured data. Measured data of the pressure loss of the core are obtained with a differential pressure transducerlocated between the core inlet and outlet at a flow rate of 13.57kg/s

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0