메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국센서학회 센서학회지 센서학회지 제13권 제1호
발행연도
2004.1
수록면
27 - 34 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Camera calibration is an important and fundamental procedure for the application of a vision sensor to 3D problems. Recently many camera calibration methods have been proposed particularly in the area of robot vision. However, the reliability of data used in calibration has been seldomly considered in spite of its importance. In addition, a camera model can not guarantee good results consistently in various conditions. This paper proposes methods to overcome such uncertainty problems of data and camera models as we often encounter them in practical camera calibration steps. By the use of the RANSAC (Random Sample Consensus) algorithm, few data having excessive magnitudes of errors are excluded. Artificial neural networks combined in a two-step structure are trained to compensate for the result by a calibration method of a particular model in a given condition. The proposed methods are useful because they can be employed additionally to most existing camera calibration techniques if needed. We applied them to a linear camera calibration method and could get improved results.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0