메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국부식방식학회 Corrosion Science and Technology Corrosion Science and Technology 제10권 제2호
발행연도
2011.1
수록면
43 - 46 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Zinc consumption in a continuous galvanizing line is one of the highest operating cost items in the facility and minimizing zinc waste is a key economic objective for any operation. One of the primary sources of excessive loss of zinc is through the formation of top dross and skimmings in the coating pot. It has been reported that the top skimmings, manually removed from the bath, typically consist of more than 80% metallic zinc with the remainder being entrained dross particles (Fe_2Al_5) along with some oxides. Depending on the drossing practices and bath management, the composition of the removed top skimmings may contain up to 2 wt% aluminum and 1 wt% iron. On-going research efforts have been aimed at in-house recovery of the metallic zinc from the discarded top skimmings prior to selling to zinc recycling brokers. However, attempting to recover the zinc entrapped in the skimmings is difficult due to the complex nature of the intermetallic dross particles and the quality and volume of the recycled zinc is highly susceptible to fluctuations in processing parameters. As such, an efficient method to extract metallic zinc from top skimmings has been optimized through the use of a specialized thermo-mechanical process enabling a continuous galvanizing facility to conserve zinc usage on-site. Also, through this work, it has been identified that filtration of discrete dross particles has been proven effective at maintaining the cleanliness of the zinc. Future efforts may progress towards expanded utilization of filters in continuous galvanizing.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0