메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제34권 제4호
발행연도
2011.1
수록면
57 - 65 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Monitoring autocorrelated processes is prevalent in recent manufacturing environments. As a proactive control for manufacturing processes is emphasized especially in the semiconductor industry, it is natural to monitor real-time status of equipment through sensor rather than resultant output status of the processes. Equipment’s sensor data show various forms of correlation features. Among them, considerable amount of sensor data, statistically autocorrelated, is well represented by Box-Jenkins autoregressive moving average (ARMA) model. In this paper, we present a design method of statistical process control (SPC) used for monitoring processes represented by the ARMA model. The proposed method shows benefits in the power of detecting process changes,and considers robustness to ARMA modeling errors simultaneously. We prove benefits through Monte carlo simulation-based investigations.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0