메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제41권 제1호
발행연도
2018.1
수록면
24 - 38 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since a social networking service (SNS) isconsidered as an effective means to communicate and interact with customers, companies are trying to utilize SNS effectively. There is a lack of theory relating to the attributes of SNS. This study aims to investigate the attributes of SNS to classify SNS. Based on the social network theory, and previous studies on internet, blog, homepage, communication attributes, this study proposes the seven attributes to classify SNS: interaction, communication, entertainment, information, sharing, intimacy and connection. A pre-test, a pilot test and a main test are conducted. In the main test, 239 SNS users are participated. Through a factor analysis this study verifies the seven attributes of SNS. An analysis of variance with multiple comparisons of Scheffé method identifies that three attributes, interaction, communication and connection, are found to play significant roles to differentiate SNS. Looking at the overall mean values of the SNS by attribute, interaction, sharing, entertainment, intimacy and communication were relatively high in Facebook. Facebook showed higher values in attributes of interaction, sharing, entertainment, intimacy and communication. Twitter shows the relatively high scores for information and connection. Regarding interaction, Facebook shows higher scores than Twitter and Cyworld. For connection, Cyworld showed a significantly lower score than Twitter and Facebook. Cyworld was separated from the others in the light of communication. Cyworld is relatively weak in communication as it is limited to the message exchanges. The results will help in identifying major attributes for each SNS and classifying SNS.

목차

등록된 정보가 없습니다.

참고문헌 (107)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0