메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제31권 제2호
발행연도
2015.1
수록면
111 - 125 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 고해상도 위성영상인 TerraSAR-X와 WorldView-2 등을 융합하여 표적의 특성을 고려한 표적군(Group of targets) 검출을 수행하였다. 관심 대상으로 하는 표적은 고정되어 있으며, 군(Group)을 이루고 있는 특징이 있다. 표적 후보를 검출하기 위해 대상 물체의 레이더 후방산란 특성을 이용한 Constant False Alarm Rate (CFAR) 알고리즘을 적용하였다. 검출된 표적 후보군으로부터 비표적을 제거하기 위해 표적의 크기 정보를 이용한 화소 클러스터링, 표적군을 이루는 표적들간의 배치 특성을 이용한 네트워크 클러스터링. 그리고 SAR 간섭기법 적용이 가능한 간섭쌍이 있는 경우 긴밀도 정보를 이용하였다. 또한, 오경보(False Alarm)를 감소시키고 최종 표적을 결정하기 위해, 표적의 형태 정보를 추출할 수 있는 Electro-Optical (EO) 영상을 바탕으로 효과적인 타원 검출 기법을 개발하였다. 개발된 표적군 검출 알고리즘을 10개 지역에 적용한 결과, 표적군 검출율은 100%, 단일 표적에 대한 오경보율은 0.03~0.3개/km2, 평균 오경보는 1.8군/64 km2로 낮은 오경보와 높은 검출율을 보이며 표적군이 검출되었다. 본 연구에서 개발된 표준화된 표적 검출 기법은 향후 무인화된 표적 검출 시스템 구축에 핵심적인 기술이 될 것으로 전망한다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0