메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Implants connect the internal body to its external structure, and is mainly supported by alveolar bone. Stable osseointegration is therefore required when implants are inserted into bone to retain structural integrity. In this paper, we present an implant with a “wing” design on its area. This type of implant improved stress distribution patterns and promoted changes in bone remodeling. Materials and Methods: Finite element analysis was performed on two types of implants. One implant was designed to have wings on its cervical area, and the other was a general root form type. On each implant, tensile and compressive forces (30 N/m2, 35 N/m2, 40 N/m2, and 45 N/m2) were loaded in the vertical direction. Stress distribution and displacement were subsequently measured. Results: The maximum stresses measured for the compressive forces of the wing-type implant were 21.5979 N/m2, 25.1974 N/m2, 29.7971 N/m2, and 32.3967 N/m2 when 30 N/m2, 35 N/m2, 40 N/m2, and 45 N/m2 were loaded, respectively. The maximum stresses measured for the root form type were 23.0442 N/m2, 26.9950 N/m2, 30.7257 N/m2, and 34.5584 N/m2 when 30 N/m2, 35 N/m2, 40 N/m2, and 45 N/m2 were loaded, respectively. Thus, the maximum stresses measured for the tensile force of the root form implant were significantly higher (about three times greater) than the wing-type implant. The displacement of each implant showed no significant difference. Modifying the design of cervical implants improves the strength of bone structure surrounding these implants. In this study, we used the wing-type cervical design to reduce both compressive and tensile distribution forces loaded onto the surrounding structures. In future studies, we will optimize implant length and placement to improve results. Conclusion: 1. Changing the cervical design of implants improves stress distribution to the surrounding bone. 2. The wing-type implant yielded better results, in terms of stress distribution, than the former root-type implant.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0