메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Rapamycin, produced by the soil bacterium Streptomyces hygroscopicus, has the ability to suppress the immune system and is used as an antifungal, anti-inflammatory, antitumor, and immunosuppressive agent. In an attempt to increase the productivity of rapamycin, mutagenesis of wild-type Streptomyces hygroscopicus was performed using ultraviolet radiation, and the medium composition was optimized using glycerol (which is one of the cheapest starting substrates) by applying Plackett-Burman design and response surface methodology. Plackett-Burman design was used to analyze 14 medium constituents: M100 (maltodextrin), glycerol, soybean meal, soytone, yeast extract, (NH4)2SO4, L-lysine, KH2PO4, K2HPO4, NaCl, FeSO4·7H2O, CaCO3, 2-(N-morpholino) ethanesulfonic acid, and the initial pH level. Glycerol, soytone, yeast extract, and CaCO3 were analyzed to evaluate their effect on rapamycin production. The individual and interaction effects of the four selected variables were determined by Box-Behnken design, suggesting CaCO3, soytone, and yeast extract have negative effects, but glycerol was a positive factor to determine rapamycin productivity. Medium optimization using statistical design resulted in a 45% (220.7 ± 5.7 mg/l) increase in rapamycin production for the Streptomyces hygroscopicus mutant, compared with the unoptimized production medium (151.9 ± 22.6 mg/l), and nearly 588% compared with wildtype Streptomyces hygroscopicus (37.5 ± 2.8 mg/l). The change in pH showed that CaCO3 is a critical and negative factor for rapamycin production.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0