메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제9권 제1호
발행연도
2013.1
수록면
157 - 172 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
There are many recommendation systems available to provide users with personalized services. Among them, the most frequently used in electronic commerce is ‘collaborative filtering’, which is a technique that provides a process of filtering customer information for the preparation of profiles and making recommendations of products that are expected to be preferred by other users, based on such information profiles. Collaborative filtering systems, however, have in their nature both technical issues such as sparsity, scalability, and transparency, as well as security issues in the collection of the information that becomes the basis for preparation of the profiles. In this paper, we suggest a movie recommendation system, based on the selection of optimal personal propensity variables and the utilization of a secure collaborating filtering system, in order to provide a solution to such sparsity and scalability issues. At the same time, we adopt ‘push attack’ principles to deal with the security vulnerability of collaborative filtering systems. Furthermore, we assess the system’s applicability by using the open database MovieLens, and present a personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the selection of optimal personalization factors and the embodiment of a safe collaborative filtering system

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0