메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국부동산분석학회 부동산학연구 부동산학연구 제19권 제4호
발행연도
2013.1
수록면
153 - 164 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In statistical theory, an outlier is a value that is numerically distant from overall pattern of adistribution. It may be a meaningful observation, but it comes from an error in survey, data entryand process in most cases. Detection and handling are needed because outliers by errors debasethe statistical quality leading to biased parameter estimation. Generally, traditional Box-plot or Z-score are very useful for univariate outlier detection and aMedian rule could be applied in the non-Gaussian case. These methods calculate the toleranceinterval that defines the range of acceptable observation values. Outlier detection for periodicsurveys would consider the past view, because it is based on a ratio of value comparing thecurrent time with previous time. If time period, however, is short, a state to get many unchangedvalues can occur. In this case, the ratio is centered at 1, and therefore outlier detection methodreflecting this factor is required. This paper considers Quartile Method with power transformation and Hidiroglou-Berthelot(1986)method that is efficient in periodic data. The methods were applied to housing sales price. Wesuggest an outlier detection method for real-world data. In addition, we also analyzed data usingTukey Algorithm of United Kingdom's office of National Statistic(ONS).

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0