메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국보건정보통계학회 보건정보통계학회지 보건정보통계학회지 제37권 제1호
발행연도
2012.1
수록면
109 - 120 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Using the new knowledge mining of symbolic data analysis which extends the data mining and exploratory data analysis, this paper would like to fitting the tree structured survival model on continuous response variable. Methods: Visualization with SDA clustering for hidden relationship of SNP for HCC, we can show the characteristics of data structure and produce the quantitative statistics for evaluation of validity and stability of clustering. We can confirm validity of application of SDA to the tree structured progression model to quantify the clinical lab data and SNP data for early diagnosis of HCC. Results: Our proposed model constructs the representative model for HCC survival time and with SNP gene data which contribute to promote the more healthy condition for old HCC patients. To fit the simple and easy interpretation tree structured survival model which could reduced from huge clinical and gene data under the new statistical theory of knowledge mining SDA. Conclusions: Using SDA analysis survival tree of HCC could be derived with clinical lab data and SNP data. The tumor type, TACE number, diuretics, encephalopathy results were significant clinical variable and IL6R_q1-24013, IL6_572, IL1B_p1_511, IL13_p_1055, IKB_p1_673, IL6R_p1_183, TNFA_p2_863, IFNG_q1_2459 were selected as a significant splitting variables.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0