메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국보건정보통계학회 보건정보통계학회지 보건정보통계학회지 제38권 제1호
발행연도
2013.1
수록면
108 - 121 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: This paper is to examine breast cancer classification using support vector machine (SVM). SVM with optimal parameters obtained using the improved grid search with 5-fold cross validation has been proposed to reach the optimal classification performance. Methods: Two data sets, Wisconsin Original Breast Cancer (WOBC) and Wisconsin Diagnostic Breast Cancer (WDBC) data set, were used to classify tumors as benign and malignant. SVM model performs the classification tasks using optimal kernel parameter and penalty parameter using 5-fold cross validation. Discriminant analysis, logistic regression analysis, decision tree, support vector machines were applied to analyze two data sets. Performance of these techniques was compared through accuracy, ROC curves and c-statistics. Results: Our analysis showed that SVMs predicted breast cancer with highest accuracy and c-statistics among four classification models. A comparison of these SVMs indicated that SVM with optimal parameters has much superior performance than SVM with default parameters. Conclusions: Research efforts have reported with increasing confirmation that SVMs have greater accurate diagnosis ability. In this paper, breast cancer diagnosis based on SVM with optimal parameters obtained using the improved grid search with 5-fold cross validation has been proposed. The performance of the method is evaluated using classification accuracy, ROC curves and c-statistics.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0