메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한양대학교 우리춤연구소 우리춤과 과학기술 우리춤과 과학기술 제7권 제1호
발행연도
2011.1
수록면
181 - 200 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper proposes a human shape recognition algorithm using the region-based shape descriptor and mean shift clustering. The main goal of paper is to identify that the object regions extracted in the video are human or not for video surveillance systems. The angular radial transform (ART), a region-based shape descriptorin MPEG-7, is applied to model the human shapes. We construct database images of human shapes, and exploit 3 radial and 12 angular frequencies for modeling human shapes. The 36-D ART vectors for human shapes are first clustered using mean shift clustering, and several representative ART vectors are modeled by mean vectors of clusters. The human objects are identified by distances between the representative vectors and ART vector of extracted objectregion. The distance threshold for each cluster is statistically obtained in the learning step. This paper also deals with smoothing object boundaries extracted by background subtraction, which improves the recognition rates. The ART vectors for human shapes are learned using thousands of illustration images and real objects extracted by background subtraction. Experiments are performed on various images such as MPEGCE-2-Bdataset, illustration of human and non-human objects, and video framescombined with background subtraction. The experimental results show that the proposed algorithm is robust and efficient in human. object recognition.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0