메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
SK텔레콤 Telecommunications Review Telecommunications Review 제23권 제3호
발행연도
2013.1
수록면
304 - 316 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Potential benefits of using online social network data for clinical studies on depression are tremendous. In this paper, we present a preliminary result on building a research framework that utilizes real-time moods of users portrayed in the Twitter social network and explore the use of language in describing depressive moods. First, we analyzed a random sample of tweets posted by the general Twitter population during a two month period to explore how depression is discussed in Twitter. We found remarkable activities related to depression in Twitter which included detailed information about Twitter users' depressed feelings, information sharing, attitudes towards depression, as well as their treatment histories. Going forward, we conducted a study on 69 participants to determine whether the use of sentiment words of depressed users differed from a typical user. We found that the use of words related to negative emotion and anger significantly increased among Twitter users with major depressive symptoms compared to those otherwise. However, no difference was found in the use of words related to positive emotion between the two groups. Our work provides several evidences that online social networks provide meaningful data for capturing depressive moods of users.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0