메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
SK텔레콤 Telecommunications Review Telecommunications Review 제22권 제6호
발행연도
2012.1
수록면
850 - 864 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Due to delay and energy constraints, a cognitive radio may not be able to perform spectrum sensing in all available channels. Therefore, a sensing policy is needed to decide which channels to sense. The channel selection problem is the problem of designing such a sensing policy to maximize throughput while avoiding interference to primary users. The channel selection problem can be formulated as a reinforcement learning problem. Channel selection schemes that employ reinforcement machine learning algorithms are vulnerable to belief manipulation attacks that contaminate the knowledge base of the learning algorithms. In this paper, we analyze the security of channel selection algorithms that are based on reinforcement learning and propose mitigation techniques that make these algorithms more robust against belief manipulation attacks.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0