메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한지구과학교육학회 대한지구과학교육학회지 대한지구과학교육학회지 제10권 제1호
발행연도
2017.1
수록면
50 - 61 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to analysis eye tracking for high school students’ learning styles in the process of solving in the behavioral domains of the College Scholastic Ability Test on Earth Science I. The subjects of this study were 50 students from two classes out of 4 classes in E high school in Chungcheong province. Among them, we conducted experiments by randomly sampling 2 students of each type of learning based on the criteria that they had not encountered the problem of Earth Science I from the past two years. The findings indicate that the item correctness rate of divergers, assimilators, convergers, and accommodators were higher in the knowledge domain, application domain, knowledge-understanding domain, and understanding domain. This confirms that there is a difference among the four learning styles in the level of achievement according to the behavioral areas of the assessment questions. The latter finding was that the high eye-share of AOI 2 appeared higher than AOI 1, 3, 4 in the course of solving the problems. This is because the four types of learners pay more careful attention to the AOI 2 area, which is the cue-or-information area of problem solving, that is, the Table, Figure, and Graph area. Therefore, in order to secure the fairness and objectivity of the selection, it is necessary that an equal number of questions of each behavioral domain be selected on the Earth Science Ⅰ Test of the College Scholastic Ability Test in general. Besides, it seems to be necessary that the knowledge, understanding, application, and the behavior area of the inquiry be highly correlated with the AOI 2 area in development of test questions.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0