메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기계기술학회 한국기계기술학회지 한국기계기술학회지 제13권 제3호
발행연도
2011.1
수록면
7 - 16 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study proposes the compensation method for the mechanical deflection error of a SCARA robot. While most studies on the related subject have dealt with the development of a control algorithm for improvement of robot accuracy, this study presents the control method reflecting the mechanical deflection error which is predicted in advance. The deflection at the end of the gripper of SCARA robot is caused by the self-weights and payloads of Arm 1, Arm 2 and quill. If the deflection is constant even though robot’s posture and payload vary, there may not be a big problem on robot accuracy because repetitive accuracy, that is relative accuracy, is more important than absolute accuracy in robot. The deflection in the end of the gripper varies as robot’s posture and payload change. That’s why the moments M_x , M_y and M_z working on every joint of a robot vary with robot’s posture and payload size. This study suggests the compensation method which predicts the deflection in advance with the variations in robot’s posture and payload using neural network. To do this, I chose the posture of robot and the payloads at random, found the deflections by the FEM analysis, and then on the basis of this data, made compensation possible by predicting deflections in advance successively with the variations in robot’s posture and payload through neural network learning

목차

등록된 정보가 없습니다.

참고문헌 (3)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0