메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
강원경기수학회 한국수학논문집 한국수학논문집 제24권 제3호
발행연도
2016.1
수록면
545 - 565 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we present some general results on the pointwise convergence of the non-convolution type nonlinear singular integral operators in the following form: \begin{equation*} T_{\lambda }(f;x)=\underset{\Omega }{\int }K_{\lambda }\left( t,x,f\left(t\right) \right) dt,\text{ }x\in \Psi ,\text{ }\lambda \in \Lambda , \end{equation*} where $\Psi =\left \langle a,b\right \rangle $ and $\Omega =\left \langle A,B\right \rangle $ stand for arbitrary closed, semi-closed or open bounded intervals in $\mathbb{R}$ or these set notations denote $\mathbb{R} $, and $\Lambda $ is a set of non-negative numbers, to the function $f\in L_{p,w}\left( \Omega \right) $, where $L_{p,w}\left( \Omega \right) $ denotes the space of all measurable functions $f$ for which $\left \vert \frac{f}{w}\right \vert ^{p}$ $(1\leq p<\infty )$ is integrable on $\Omega ,$ and $w: \mathbb{R} \rightarrow \mathbb{R}^{+}$ is a weight function satisfying some conditions.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0