메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제9권 제6호
발행연도
2014.1
수록면
345 - 351 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents pedestrian recognition to improve performance for vehicle safety system or surveillance system. Pedestrian detection method using HOG (Histograms of Oriented Gradients) has showed 90% recognition rate. But if someone takes a picture in the rain, the image may be distorted by rain streaks and recognition rate goes down by 62%. To solve this problem, we applied image decomposition method using MCA (Morphological Component Analysis). In this case, rain removal method improves recognition rate from 62% to 70%. However, it is difficult to apply conventional image decomposition method using MCA on vehicle safety system or surveillance system as conventional method is too slow for real-time system. To alleviate this issue, we propose a rain removal method by using low-pass filter and DCT (Discrete Cosine Transform). The DCT helps separate the image into rain components. The image is removed rain components by Butterworth filtering. Experimental results show that our method achieved 90% of recognition rate. In addition, the proposed method had accelerated processing time to 17.8ms which is acceptable for real-time system.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0