메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제8권 제4호
발행연도
2013.1
수록면
219 - 225 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents a method using Maximum-Likelihood Linear Regression (MLLR) adaptation to improve recognition performance of Limabeam algorithm for speech recognition using microphone array. From our investigation on Limabeam algorithm, we can see that the performance of filtering optimization depends strongly on the supporting optimal state sequence and this sequence is created by using Viterbi algorithm trained with HMM model. So we propose an approach using MLLR adaptation for the recognition of speech uttered in a new environment to obtain better optimal state sequence that support for the filtering parameters' optimal step. Experimental results show that the system embedded with MLLR adaptation presents the word correct recognition rate 2% higher than that of original calibrate Limabeam and also present 7% higher than that of Delay and Sum algorithm. The best recognition accuracy of 89.4% is obtained when we use 4 microphones with 5 utterances for adaptation.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0