메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
연세대학교 의과대학 Yonsei Medical Journal Yonsei Medical Journal 제57권 제1호
발행연도
2016.1
수록면
50 - 57 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Traditional chemotherapy is the main adjuvant therapy for the treatment of non-small cell lung cancer (NSCLC). However,the emergence of multi-drug resistance (MDR) has greatly restricted the curative effect of chemotherapy. Therefore, it isnecessary to find a method to treat MDR NSCLC clinically. It is worth investigating whether NSCLCs that are resistant to traditionalchemotherapy can be effectively treated with tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR). Materials and Methods: The expression of P-glycoprotein (P-gp) and lung resistance-related protein (LRP) was detected by immunohistochemistry,and mutations in EGFR (exons 19 and 21) and Kirsten rat sarcoma viral oncogene homolog (KRAS) (exon 2)were detected by high-resolution melting analysis (HRMA) of surgical NSCLC specimens from 127 patients who did not undergotraditional chemotherapy or radiotherapy. A Pearson chi-square test was performed to analyze the correlations between the expressionof P-gp and LRP and mutations in EGFR and KRAS. Results: The expression frequencies of P-gp and LRP were significantly higher in adenocarcinomas from non-smoking patients;the expression frequency of LRP was significantly higher in cancer tissue from female patients. The frequency of EGFR mutationswas significantly higher in well to moderately differentiated adenocarcinomas from non-smoking female patients. The frequencyof EGFR mutations in the cancers that expressed P-gp, LRP, or both P-gp and LRP was significantly higher than that in cancersthat did not express P-gp or LRP. Conclusion: NSCLCs expressing P-gp/LRP bear the EGFR mutation in exon 19 or 21 easily.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0