메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제12권 제4호
발행연도
2013.1
수록면
44 - 55 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
지능형교통체계(ITS: Intelligent Transportation System)의 발전은 과거에 비해 보다 신뢰성 있고 폭넓은 교통자료 및 기상자료 등의 취득을 가능하도록 하였다. 이러한 첨단 시스템의 발전에 따라 수집된 자료를 이용하여 교통상황과 기상상황에 대한 다양한 연구가 활발히 진행되고 있다. 본 연구에서는 도로 기상정보 시스템(RWIS: Road Weather Information System)자료와 검지기 자료를 이용하여 강우량에 따른 속도 감소 패턴을 분석하고, 강우량에 따른 속도감소량 산출 결과를 통해 강우수준을 분류하는 기준을 제시하였다. 인공신경망을 이용하여 강우수준별 통행속도를 예측하였으며, 예측 결과를 비교하여 강우수준별 통행속도 예측 특성을 분석하였다. 분석결과, 강우수준 분류 기준은 0.4mm/5min, 0.8mm/5min으로 나타났으며, 강우수준별 속도와 교통량에 대한 분산분석 결과 강우수준별로 차이를 보이는 것으로 나타났다. 인공신경망을 통한 5분 단위의 통행속도 예측결과, 비강우인 경우에는 과거 5개 자료, 즉, 25분 동안의 속도자료를 사용하여 분석하는 것이 예측력이 높게 나타났으며, 강우가 발생하는 경우에는 과거 2~3개 자료, 즉, 10~15분 동안의 속도자료를 사용하는 것이 예측력이 높게 나타났다. 본 연구에서는 기상조건에 관계없이 신뢰성 있는 교통정보를 제공하기 위한 통행시간 예측 방법론을 제시함으로써 통행시간 정보 등의 교통정보 제공 시 보다 정확한 정보를 제공하여 교통상황 예측정보의 신뢰도 향상 및 교통상황 예측정보의 활용도를 증대시킬 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0