메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제11권 제4호
발행연도
2012.1
수록면
131 - 143 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 지역적 특징을 빠르게 추출할 수 있는 SURF(Speed Up Robust Features) 알고리즘을 이용해 안경과 조명 등 자동차 환경에 적응적인 새로운 눈 상태 검출방법을 제안하였다. 또한, 베이지안 추론을 이용하여 각 운전자에 대해 세 가지 고유의 눈 상태 템플릿을 실시간적으로 생성함으로써 눈 상태 검출 성능을 향상시켰다. 주·야간, 안경 착용 시, 미착용 시 등 여러 환경에 대한 성능 실험 결과 주·야간 환경에서 각각 평균 98.1%와 96.0%의 검출률을, 공개된 ZJU데이터베이스에 대한 실험 결과 평균 97.8%의 검출률을 보임으로써 제안된 방법의 우수성을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0