메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기업경영학회 기업경영연구 기업경영연구 제20권 제1호
발행연도
2013.1
수록면
29 - 41 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is well known that the volatility of asset returns is not constant, which has put forth the development of many option models incorporating a stochastic or GARCH process of volatility. Although these option models successfully reduce pricing and hedging errors of the Black-Scholes model, the complexity of the models often discourages market participants to utilize these models in pricing and hedging options. An alternative approach to adjust Black-Scholes model misspecification is to extend Black-Scholes model’s strict distributional assumption by adjusting non-lognormal skewness and kurtosis. This paper examines pricing and hedging performances of a skewness and kurtosis adjusted option model proposed by Jarrow and Rudd when volatility follows a stochastic process. Consistent with the previous research, the results of this study show that the skewness and kurtosis adjusted Jarrow-Rudd model reduces Black-Scholes pricing errors substantially especially for long-term, deep-in-the-money options. For hedging, however, improvements for the Jarrow-Rudd model over the Black-Scholes model are not virtually found. Overall, the study shows Jarrow-Rudd model could be a better alternative for the Black-Scholes model for option pricing but not necessarily for hedging. But considering the fact that Monte Carlo simulations employed in this study may subject to a model risk, the results of this simulation should be taken with caution.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0