메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제14권 제1호
발행연도
2013.1
수록면
57 - 61 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 하이브리드 유전 알고리즘을 이용한 morphological 뉴럴 네트워크(MNN)의 최적화 방법을 제안하였다. MNN은 max-plus 연산을 기반으로 하고 있으므로 경사 학습법에 의한 파라미터 학습이 매우 어렵다. 이러한 문제를 해결하기 위해 하이브리드 유전 알고리즘을 이용하여 MNN의 파라미터들을 학습하였다. 제안된 방법의 유용성을 보이기 위해 SIDBA(standard image database) 표준영상에서 추출된 테스트 영상을 이용한 영상 압축/복원 실험을 수행하였고. 그 결과 제안된 방법에 의한 복원 영상이 합-곱 연산에 기반한 기존의 뉴럴 네트워크에 의한 복원 영상보다 우수함을 알 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0