메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제15권 제2호
발행연도
2013.1
수록면
593 - 602 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
There has been a considerable and growing interest in integer-valued time series data leading to a diversification of modelling approaches. Among them, we focus two recent models. The first model is the INGARCH(p,q) model proposed by Ferland et al. (2006) which is able to describe integer-valued processes with overdispersion and analogous to classical generalized autoregressive conditional heteroskedastic (GARCH) (p,q) model. And the second model is a special class of observation-driven models termed integer-valued autoregressive processes introduced independently by Al-Osh, Alzaid (1987) and McKenzie (1988), which is extended to higher orders by Du, Li (1991). The INAR(p) models use thinning operations, not scalar multiplication in AR(p) model. Therefore the implementation of ML in INAR(p) model is not ease, fortunately, Bu et al. (2008) developed a general framework for maximum likelihood (ML) analysis of higher-order integer-valued autoreg- ressive processes. In this paper, we summarize some characteristics of INGARCH(p,q) model. And we analyze real data example for Korean financial time series using the INGARCH(p,q) model and INAR(p) model.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0