메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제16권 제3호
발행연도
2014.1
수록면
1,141 - 1,149 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Today, government, public institutions and companies began to use data mining techniques to discover valuable information and knowledge from big database. Data mining is the process of analyzing data from different perspectives, and summarizing it into useful information through a huge volume database. Association rule, one of the well-studied methods in data mining, finds the relationship among itemsets in a massive database. In finding meaningful association rules, several objective interestingness measures are used, which are support, confidence, net confidence measure, and symmetrically pure confidence. But these measures are not sufficient to generate only interesting information, and have some drawbacks that they can not determine the direction of the association, and are difficult to interpret operationally. In this paper, we proposed a symmetrically weighted net confidence as an association threshold, and investigate the conditions of association criteria. Also, we compared this measure with some association thresholds through a few experiments. The results showed that the symmetrically weighted net confidence monotonically increased as co-occurrence frequency increased, had positive or negative values, and is symmetric.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0