메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제15권 제1호
발행연도
2013.1
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In recent year, many methods suitable for classification problems have been extended to include a range of popular techniques, such as neural networks, logistic regression and decision tree induction. Unlike other data mining techniques that use a training set of preclassified data to create a model and then discard the training set, for MBR (memory- based reasoning), the training set essentially is the model. This study gives a way on the memory-based reasoning, decision tree, logistic regression, neural networks and bagging model comparison methods for home equity lines of credit data using 1:1, 1:2, 1:3 and 1:4 target rate datamarts. Through the reasoning underlying their development, MBR classifier can also be a good choice to make a prediction. The proper k for MBR classifier is selected based on the minimum misclassification rate criterion. Under the proper k, we found that the performance of MBR dominated other classification technique for the data set that we analyzed.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0