메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국습지학회 한국습지학회지 한국습지학회지 제16권 제1호
발행연도
2014.1
수록면
19 - 32 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 우량계로 측정한 강우량이 실제 지표면에 떨어지는 강우 값에 근접하도록 보정함으로써, 유출해석 및 기타 수문분석에 적용할 경우 신뢰도 높은 결과를 얻는데 목적이 있다. 지상우량계로 관측한 강우량에 대한 바람의 영향을분석하기 위하여, 표준기상관측소인 추풍령기상대에 설치된 바람막이의 유(有)·무(無)에 따른 우량계와 기준우량계의 자료를 획득하였다. 획득한 강우를 단순선형회귀 모형과 신경망 모형을 이용하여 지상강우를 보정하였으며, VfloTM모형을 이용한 유출모의를 통하여 자료의 신뢰도를 검증하였다. 단순선형회귀 모형을 사용한 보정 강우량은 실제 관측된 강우량보다 5%~18%가 큰 강우량을 나타냈으며, 강우획득에 있어 바람의 영향은 1.6~3.3m/s의 풍속구간에서 가장 큰 것을 확인하였다. 또한 회귀모형에서는 풍속구간 5.5이상일 경우 자료의 개수가 전체자료의 0.7%로 매우 작고, 이상치가 획득됨으로써 회귀모형 적용의 어려움이 있었다. 반면에 신경망 기법을 이용한 지상강우의 보정은 전체적으로 관측 값보다10~20% 가량 강우가 적게 추정되었다. 통계분석결과, 전체적으로 편차가 크고 평균 강우획득량이 클수록 신경망 모형의적용성이 높게 나타났으며, 획득한 강우량의 극치값이 크게 나타날수록 선형회귀 모형의 적용성이 높게 나타나는 것을확인하였다. 본 연구결과로 신뢰성 높은 강우보정을 위해서는 지역별 강우 특성에 따른 적합한 보정방법을 선택해야 할것으로 판단되며, 앞으로의 수문해석에 있어 본 논문에서 제시하는 강우 보정방법을 적용함으로써 신뢰도 높은 수문해석결과를 기대할 수 있을 것으로 사료된다.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0