The effects of B4C on the mechanical properties of WC/Ni-Si hardmetal were analyzed using sintered bodies comprising WC(70-x wt.%), Ni (28.5 wt.%), Si (1.5 wt.%), and B4C (x wt.%), where 0 x 1.2 wt.%. Samples were prepared by a combination of mechanical milling and liquid-phase sintering. Phase and microstructure characterizations were conducted using X-ray diffractometry, scanning electron microscopy, and electron probe X-ray micro analysis.
The mechanical properties of the sintered bodies were evaluated by measuring their hardness and transverse rupture strength. The addition of B4C improved the sinterability of the hardmetals. With increasing B4C content, their hardness increased, but their transverse rupture strength decreased. The changes of sinterability and mechanical properties were attributed to the alloying reaction between B4C and the binder metal (Ni, Si).