메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제54권 제5호
발행연도
2012.1
수록면
43 - 47 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A evaluation for the strength of rock includes a lot of uncertainty due to existence of discontinuity surface and weakness plain in the rock mass, so essential test results and other data for the resonable strength analysis are absolutely insufficient. Therefore, a analytical technique to reduce such uncertainty can be required. A probabilistic analysis technique has mainly to make up for the uncertainty to investigate the strength of rock mass. Recently, a artificial neural networks, as a more newly analysis method to solve several problems in the existing analysis methodology, trends to apply to study on the rock strength. In this study the unconfined compressive strength from basic physical property values of sedimentary rock, black shale and red shale, distributed in Daegu metropolitan area is estimated, using the artificial neural networks. And the applicability of the analysis method is investigated. From the results, it is confirmed that the unconfined compressive strength of the sedimentary rock can be easily and efficiently predicted by the analysis technique with the artificial neural networks.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0