메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Typically, water quality sampling takes place intermittently since sample collection and following analysis requires substantial cost and efforts. Thereforeregression models (or rating curves) are often used to interpolate water quality data. LOADEST has nine regression models to estimate water quality data,and one regression model needs to be selected automatically or manually. The nine regression models in LOADEST and auto-selection by LOADESTwere evaluated in the study. Suspended solids data were collected from forty-nine stations from the Water Information System of the Ministry ofEnvironment. Suspended solid data from each station was divided into two groups for calibration and validation. Nash-Stucliffe efficiency (NSE) andcoefficient of determination (R2) were used to evaluate estimated suspended solid loads. The regression models numbered 1 and 3 in LOADEST providedhigher NSE and R2, compared to the other regression models. The regression modes numbered 2, 5, 6, 8, and 9 in LOADEST provided low NSE. Inaddition, the regression model selected by LOADEST did not necessarily provide better suspended solid estimations than the other regression models did.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0