메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제60권 제6호
발행연도
2018.1
수록면
43 - 54 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The accurate estimation of reference crop evapotranspiration (ETo) is essential in irrigation water management to assess the time-dependent status ofcrop water use and irrigation scheduling. The importance of ETo has resulted in many direct and indirect methods to approximate its value and includepan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs)have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, patternrecognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalizedregression neural network (GRNN), to evaluate their capability to accurately predict ETo using daily meteorological data. All data were obtained fromtwo automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. Daily ETo was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of ETo and correspondingmeteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against ETocalculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performedbest followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers andpolicy makers for effective agricultural water governance.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0