메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한진단검사의학회 Annals of Laboratory Medicine Annals of Laboratory Medicine 제28권 제1호
발행연도
2008.1
수록면
79 - 87 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background : Since the human genome project was completed in 2003, there have been numerous reports on cancer and related markers. This study was aimed to develop a system to extract automatically information regarding the relationship between cancer and tumor markers from biomedical literatures. Methods : Named entities of tumor markers were recognized by both a dictionary-based method and machine learning technology of the support vector machine. Named entities of cancers were recognized by the MeSH dictionary. Results : Relational and filtering keywords were selected after annotating 160 abstracts from PubMed. Relational information was extracted only when one of the relational keywords was in an appropriate position along the parse tree of a sentence with both tumor marker and disease entities. The performance of the system developed in this study was evaluated with another set of 77 abstracts. With the relational and filtering keyword used in the system, precision was 94.38% and recall was 66.14%, while without the expert knowledge precision was 49.16% and recall was 69.29%. Conclusions : We developed a system that can extract relational information between a tumor and its markers by incorporating expert knowledge into the system. The system exploiting expert knowledge would serve as a reference when developing another information extraction system in various medical fields. (Korean J Lab Med 2008;28:79-87)

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0