메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한예방의학회 예방의학회지 예방의학회지 제43권 제3호
발행연도
2010.1
수록면
257 - 264 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: An accurate estimation of cancer patients is the basis of epidemiological studies and health services. However in Korea, cancer patients visiting out-patient clinics are usually ruled out of such studies and so these studies are suspected of underestimating the cancer patient population. The purpose of this study is to construct a more complete, hospital-based cancer patient registry using multiple sources of medical information. Methods: We constructed a cancer patient detection algorithm using records from various sources that were obtained from both the in-patients and out-patients seen at Asan Medical Center (AMC) for any reason. The medical data from the potentially incident cancer patients was reviewed four months after first being detected by the algorithm to determine whether these patients actually did or did not have cancer. Results: Besides the traditional practice of reviewing the charts of in-patients upon their discharge, five more sources of information were added for this algorithm, i.e., pathology reports, the national severe disease registry, the reason for treatment,prescriptions of chemotherapeutic agents and radiation therapy reports. The constructed algorithm was observed to have a PPV of 87.04%. Compared to the results of traditional practice, 36.8% of registry failures were avoided using the AMC algorithm. Conclusions: To minimize loss in the cancer registry, various data sources should be utilized, and the AMC algorithm can be a successful model for this. Further research will be required in order to apply novel and innovative technology to the electronic medical records system in order to generate new signals from data that has not been previously used.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0