메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회지 대한수학회지 제52권 제4호
발행연도
2015.1
수록면
853 - 868 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let G be a complex semisimple simply connected linear al- gebraic group. The main result of this note is to give several equivalent criteria for the untwistedness of the twisted cubes introduced by Gross- berg and Karshon. In certain cases arising from representation theory, Grossberg and Karshon obtained a Demazure-type character formula for irreducible G-representations as a sum over lattice points (counted with sign according to a density function) of these twisted cubes. A twisted cube is untwisted when it is a “true” (i.e., closed, convex) polytope; in this case, Grossberg and Karshon’s character formula becomes a purely positive formula with no multiplicities, i.e., each lattice point appears precisely once in the formula, with coefficient +1. One of our equiva- lent conditions for untwistedness is that a certain divisor on the special fiber of a toric degeneration of a Bott-Samelson variety, as constructed by Pasquier, is basepoint-free. We also show that the strict positivity of some of the defining constants for the twisted cube, together with convexity (of its support), is enough to guarantee untwistedness. Finally, in the special case when the twisted cube arises from the representation-theoretic data of λ an integral weight and w a choice of word decomposition of a Weyl group element, we give two simple necessary conditions for untwistedness which is stated in terms of λ and w.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0