메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회지 대한수학회지 제50권 제5호
발행연도
2013.1
수록면
1,129 - 1,163 (35page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Based on finite element discretization, two linearization approaches to the defect-correction method for the steady incompressible Navier-Stokes equations are discussed and investigated. By applying m times of Newton and Picard iterations to solve an artificial viscosity stabilized nonlinear Navier-Stokes problem, respectively, and then correcting the solution by solving a linear problem, two linearized defect-correction algorithms are proposed and analyzed. Error estimates with respect to the mesh size h, the kinematic viscosity v, the stability factor α and the number of nonlinear iterations m for the discrete solution are derived for the linearized one-step defect-correction algorithms. Efficient stopping criteria for the nonlinear iterations are derived. The influence of the linearizations on the accuracy of the approximate solutions are also investigated. Finally, numerical experiments on a problem with known analytical solution, the lid-driven cavity flow, and the flow over a backward-facing step are performed to verify the theoretical results and demonstrate the effectiveness of the proposed defect-correction algorithms.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0