메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회지 대한수학회지 제45권 제3호
발행연도
2008.1
수록면
727 - 740 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A ring R is called IFP, due to Bell, if ab = 0 implies aRb = 0 for a, b ∈ R. Huh et al. showed that the IFP condition need not be preserved by polynomial ring extensions. But it is shown that ∑ni=0 EaiE is a nonzero nilpotent ideal of E whenever R is an IFP ring and 0 ≠ f ∈ F is nilpotent, where E is a polynomial ring over R, F is a polynomial ring over E, and ai’s are the coefficients of f. We shall use the term near- IFP to denote such a ring as having place near at the IFPness. In the present note the structures of IFP rings and near-IFP rings are observed, extending the classes of them. IFP rings are NI (i.e., nilpotent elements form an ideal). It is shown that the near-IFPness and the NIness are distinct each other, and the relations among them and related conditions are examined.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0