메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제51권 제4호
발행연도
2014.1
수록면
995 - 1,003 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A remarkably large number of integral formulas involving a variety of special functions have been developed by many authors. Also many integral formulas involving various Bessel functions have been pre- sented. Very recently, Choi and Agarwal derived two generalized integral formulas associated with the Bessel function J (z) of the first kind, which are expressed in terms of the generalized (Wright) hypergeometric func- tions. In the present sequel to Choi and Agarwal’s work, here, in this paper, we establish two new integral formulas involving the generalized Bessel functions, which are also expressed in terms of the generalized (Wright) hypergeometric functions. Some interesting special cases of our two main results are presented. We also point out that the results pre- sented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0