메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제49권 제4호
발행연도
2012.1
수록면
685 - 692 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Consider a hypersurface $M^n$ in $\mathbb{R}^{n+1}$ with $n$ distinct principal curvatures, parametrized by lines of curvature with vanishing Laplace invariants. (1) If the lines of curvature are planar, then there are no such hypersurfaces for $n{\geq}4$, and for $n=3$, they are, up to M$\ddot{o}$bius transformations Dupin hypersurfaces with constant M$\ddot{o}$bius curvature. (2) If the principal curvatures are given by a sum of functions of separated variables, there are no such hypersurfaces for $n{\geq}4$, and for $n=3$, they are, up to M$\ddot{o}$bius transformations, Dupin hypersurfaces with constant M$\ddot{o}$bius curvature.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0