메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제21권 제1호
발행연도
2006.1
수록면
45 - 52 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Every non-associative algebra $L${\hskip-0.015cm} corresponds to its symmetric semi-Lie algebra $L_{[,]}$ with respect to its commutator. It is an interesting problem whether the equality {\tiny$Aut_{non}(L){\hskip-0.03cm}={\hskip-0.03cm}Aut_{semi-Lie}(L)$} holds or not \cite{Al}, \cite{San}. We find the non-associative algebra automorphism groups $Aut_{non}$ $(\overline {WN_{0,0,1}}_ {[0,1,r_1,\ldots ,r_p]} )$ and $Aut_{semi-Lie}$ $(\overline {WN_{0,0,1}}_ {[0,1,r_1,\ldots ,r_p]} )$, where every automorphism of the automorphism groups is the composition of elementary maps \cite{CN}, \cite{CN1}, \cite{N}, \cite{Nam2}, \cite{NC}, \cite{NKW}, \cite{NW}. The results of the paper show that the ${\mathbf F}$-algebra automorphism groups of a polynomial ring and its Laurent extension make easy to find the automorphism groups of the algebras in the paper.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0