메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제49권 제1호
발행연도
2012.1
수록면
109 - 126 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In 2003, Marques-Smith and Sullivan described the join ${\Omega}$ of the 'natural order' ≤ and the 'containment order' $\subseteq$ on P(X), the semigroup under composition of all partial transformations of a set X. And, in 2004, Pinto and Sullivan described all automorphisms of PS(q), the partial Baer-Levi semigroup consisting of all injective ${\alpha}{\in}P(X)$ such that ${\mid}X{\backslash}X{\alpha}\mid=q$, where $N_0{\leq}q{\leq}{\mid}X{\mid}$. In this paper, we describe the group of automorphisms of R(q), the largest regular subsemigroup of PS(q). In 2010, we studied some properties of ≤ and $\subseteq$ on PS(q). Here, we characterize the meet and join under those orders for elements of R(q) and PS(q). In addition, since ≤ does not equal ${\Omega}$ on I(X), the symmetric inverse semigroup on X, we formulate an algebraic version of ${\Omega}$ on arbitrary inverse semigroups and discuss some of its properties in an algebraic setting.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0