메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제54권 제2호
발행연도
2017.1
수록면
559 - 571 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We investigate modules $M$ having the injective property relative to nonsingular modules. Such modules are called ``$\mathcal N$-injective modules''. It is shown that $M$ is an $\mathcal N$-injective $R$-module if and only if the annihilator of $Z_2(R_R)$ in $M$ is equal to the annihilator of $Z_2(R_R)$ in $E(M)$. Every $\mathcal N$-injective $R$-module is injective precisely when $R$ is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal N$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) $R$-module is $\mathcal N$-injective, if and only if $R^{(\mathbb N)}$ is $\mathcal N$-injective, if and only if $R$ is right $t$-semisimple. The $\mathcal N$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal N$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0