메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제49권 제6호
발행연도
2012.1
수록면
1,291 - 1,302 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we introduce a new elliptic PDE: $$\{{\nabla}{\cdot}\(\frac{|{\gamma}^{\omega}(r)|^2}{\sigma}{\nabla}v_{\omega}(r)\)=0,\;r{\in}{\Omega},\\v_{\omega}(r)=f(r),\;r{\in}{\partial}{\Omega},$$ where ${\gamma}^{\omega}={\sigma}+i{\omega}{\epsilon}$ is the admittivity distribution of the conducting material ${\Omega}$ and it is shown that the introduced elliptic PDE can replace the standard elliptic PDE with conductivity coefficient in EIT imaging. Indeed, letting $v_0$ be the solution to the standard elliptic PDE with conductivity coefficient, the solution $v_{\omega}$ is quite close to the solution $v_0$ and can show spectroscopic properties of the conducting object ${\Omega}$ unlike $v_0$. In particular, the potential $v_{\omega}$ can be used in detecting a thin low-conducting anomaly located in ${\Omega}$ since the spectroscopic change of the Neumann data of $v_{\omega}$ is inversely proportional to thickness of the thin anomaly.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0