메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제18권 제1호
발행연도
2012.1
수록면
18 - 28 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Machine learning systems can considerably reduce the time and effort needed by experts to perform new systematic reviews (SRs). This study investigates categorization models, which are trained on a combination of included and commonly excluded articles, which can improve performance by identifying high quality articles for new procedures or drug SRs. Methods: Test collections were built using the annotated reference files from 19 procedure and 15 drug systematic reviews. The classification models, using a support vector machine, were trained by the combined even data of other topics, excepting the desired topic. This approach was compared to the combination of included and commonly excluded articles with the combination of included and excluded articles. Accuracy was used for the measure of comparison. Results: On average, the performance was improved by about 15% in the procedure topics and 11% in the drug topics when the classification models trained on the combination of articles included and commonly excluded, were used. The system using the combination of included and commonly excluded articles performed better than the combination of included and excluded articles in all of the procedure topics. Conclusions: Automatically rigorous article classification using machine learning can reduce the workload of experts when they perform systematic reviews when the topic-specific data are scarce. In particular, when the combination of included and commonly excluded articles is used, this system will be more effective.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0