메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제13권 제1호
발행연도
2007.1
수록면
35 - 41 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, hidden Markov models (HMMs) have been found to be very effective in classifying heart sound signals. For the classification based on the HMM, the continuous cyclic heart sound signal needs to be manually segmented to obtain isolated cycles of the signal. However, the manual segmentation will be practically inadequate in real environments. Although, there have been some research efforts for the automatic segmentation, the segmentation errors seem to be inevitable and will result in performance degradation in the classification. To solve the problem of the segmentation, we propose to use the ergodic HMM for the classification of the continuous heart sound signal. In the classification experiments, the proposed method performed successfully with an accuracy of about 99(%) requiring no segmentation information. (Journal of Korean Society of Medical Informatics 13-1,35-41, 2007)

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0