메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제12권 제8호
발행연도
2014.1
수록면
321 - 327 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
특징 선택은 중복 또는 서로간의 관련이 없는 특징을 제거하여 분류 성능을 향상시키는 기술이다. 본 논문에서는 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership Functions; NEWFM)에서 제공하는 가중 퍼지소속함수의 경계합 (Bounded Sum of Weighted Fuzzy Membership functions, BSWFM)의 무게중심간의 거리를 이용한 새로운 특징 선택을 제안하여 분류 성능을 향상시켰다. 이러한 거리 기반의 특징 선택을 이용하여 초기 24개의 특징으로부터 무게중심간의 거리가 짧은 특징을 하나씩 제거되면서 분류 성능이 가능 높은 22개의 최소 특징을 선택하였다. 이들 22개의 최소 특징을 NEWFM의 입력으로 사용하여 97.7%, 99.7%, 98.7%의 민감도, 특이도, 정확도를 각각 구하였다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0