메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국공학교육학회 공학교육연구 공학교육연구 제15권 제4호
발행연도
2012.1
수록면
41 - 47 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Data mining and knowledge discovery techniques have shown to be effective in finding hidden underlying rules inside large database in an automated fashion. On the other hand, analyzing, assessing, and applying students’ survey data are very important in science and engineering education because of various reasons such as quality improvement, engineering design process, innovative education, etc. Among those surveys, analyzing the students’ views on science-technology-society can be helpful to engineering education. Because, although most researches on the philosophy of science have shown that science is one of the most difficult concepts to define precisely, it is still important to have an eye on science, pseudo-science, and scientific misconducts. In this paper, we report the experimental results of applying decision tree induction algorithms for analyzing the questionnaire results of high school students’ views on science-technology-society (HS-VOSTS). Empirical results on various settings of decision tree induction on HS-VOSTS results from one South Korean university students indicate that decision tree induction algorithms can be successfully and effectively applied to automated knowledge discovery from students’ survey data.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0