메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국감성과학회 감성과학 감성과학 제9권 제3호
발행연도
2006.1
수록면
179 - 185 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 다른 분야에서 성공적으로 활용되고 있는 다양한 추천 기법들을 비교하는 사례 연구를 통해 더욱 효과적인 디자인 개인화 서비스 개발의 기회를 모색하고자 하였다. 우선, 문헌연구를 통하여 ‘컨텐츠 기반 기법’, ‘협력적 필터링 기법’, 그리고 ‘인구통계적 필터링 기법’과 같은 대표적인 추천 기법들의 특징과 장단점을 고찰하였다. 다음으로 이러한 기법들이 디자인과 같은 컨텐츠를 대상으로 적용되었을 때 예상되는 추천 정확성을 분석하기 위해 실험을 실시하였다. 그 결과, 인구통계적 필터링 기법은 나머지 기법에 비해서 비교적 낮은 정확성을 보였으며 컨텐츠 기반 기법이 가장 좋은 높은 추천 정확성을 나타내었다. 아울러 협력적 필터링 기법은 참여자들의 수가 증가할수록 좀 더 높은 추천 정확성을 나타냄을 알 수 있었다. 결론적으로 디자인 추천 서비스는 컨텐츠 기반 기법이나 협력적 필터링 기법의 적용을 통해 그 추천 정확성을 향상시킬 수 있으며 대상 사용자의 수가 일정 수준 이상으로 증가된다면 협력적 필터링 기법이 가장 우수한 효율을 나타낼 가능성이 높음을 제시하였다.

목차

등록된 정보가 없습니다.

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0